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a b s t r a c t

In this paper, we are to present a model that integrates and benefits from the global rarity, local contrast
and central bias for saliency detection. Previous saliency works only consider one or two of them.
Further, to avoid some inherent drawbacks of existing three factors, we first over-segment the image
into many small coherent regions. And then, we exploit the self-information and regional de-noising,
regional contrast and consistency, Gaussian function and regional averaging to get three new factors of
global rarity, local contrast and central bias. Finally, we embed them into a nonlinear neural network
to figure out their own contributions in saliency detection. Extensive experiments and comparisons
illustrate the effectiveness of our saliency model with three new built factors.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Visual saliency detection has become very popular in decades.
Modeling visual saliency is very helpful for many tasks in compu-
ter vision, including image segmentation [1], image retrieval [2]
and image mosaics [3]. Recently, a lot of models have been
proposed to detect visual saliency. Among them, some models
emphasize the global rarity to compute the saliency. The idea is
that human eyes are not attracted by frequent features in an image
but by the rare features. Mancas et al. [4] propose a visual
attention model based on rarity and measure visual saliency using
information theory. Hou and Zhang [5] extract the spectral
residual of an image in frequency domain and convert the result
in frequency domain to the saliency map in spatial domain using
inverse Fourier transformation. The global rarity can well detect
the salient objects of small sizes. However, some parts of the
background which have rare features will be wrongly highlighted
(see Fig. 1(B)). Furthermore, when the salient object is large, the
detection result may be not acceptable.

Many other models consider the local contrast. The idea is that
eyes are attracted by the features distinct from the surrounding
features. For example, inspired by the cognitive discovery of the
primate visual system, Itti et al. [6] propose the first computational
model of visual saliency. This model computes the central-surround

contrast using different multi-scale features and sums different
feature maps with equal weights to get the final single saliency
map. Harel et al. [7] propose a graph based model using the same
feature maps as Itti. They compute the contrast between a point
and other points to get the saliency map. Ma and Zhang et al. [8]
estimate visual saliency based on local contrast analysis using a
fuzzy growing method. Cheng et al. [9] propose a saliency extraction
method based on regional contrast. The benefit of the local contrast
is that it can detect the salient object even when the object is large.
However, this method may wrongly highlight the background part
close to the object (see Fig. 1(C)).

Besides, there are many models that state the central bias often
exists in free scene viewing [10–12]. The possible reasons are as
follows: First, the screen center may be the optimal location for
early information processing. Second, the screen center may be the
convenient location to start oculomotor exploration of the scene.
Third, it may be that the central bias reflects a tendency to re-
center the eye in its orbit. Fourth, when humans take a picture,
they often frame the object of interest near or in the central part of
the image. Hence, all the works [12–14] attempt to take a central
bias for saliency detection. The central bias is helpful when the
salient object is in or near the center of one image. However, it
cannot well detect visual saliency when the object is off the center
of the image.

To be sure, global rarity, local contrast and central bias each are
with great advantages and important roles in visual saliency
detection. At the same time, as pointed out above, they each have
some disadvantages for saliency detection. So, only considering

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.04.003
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Fax: þ86 025 84315565.
E-mail address: dingjundi2010@njust.edu.cn (J. Ding).

Neurocomputing 144 (2014) 569–580

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.04.003
http://dx.doi.org/10.1016/j.neucom.2014.04.003
http://dx.doi.org/10.1016/j.neucom.2014.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.003&domain=pdf
mailto:dingjundi2010@njust.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.04.003


one factor is usually not ideal. Several models suggest integrating
two factors. An example is in [15] where the features both globally
rare and locally contrasted are considered to be salient. Here, we
are to integrate all of such three factors. This is our first contribu-
tion in this paper. That is, we are to build a model that unifies
global rarity, local contrast and central bias factors and benefits
from the advantages of all of them for saliency detection.

At the same time, as pointed out above, they each have some
disadvantages for saliency detection. So, we are not simply to put
existing three factors together. To overcome such drawbacks, we
first over-segment the image into many homogeneous regions.
After that, we exploit the self-information of each pixel and the
region de-noising operation to get a rarity map. For the local
contrast factor, we first compute the regional contrast. Then we
consider the regional consistency according to the idea that nearby
regions with similar features are more likely to have the close
saliency value to get a local contrast map. At last, as shown in
Fig. 1(D), most existing central bias factors only consider the
centrifugal distance. It brings a lot of evident false alarms. To
avoid false alarms, we first use the Gaussian kernel function to
model an offcenter map for each pixel, and then average the
offcenter values of all pixels in each region to get the central bias.
As our second contribution, they will be detailed below.

After getting these factors, how to combine them is another
issue. Specifically, we think each factor has its own contribution.
For an image, different factors may play roles with different
powers for saliency detection. So, we do not simply use an average
strategy to linearize their roles by assigning equal weights to them,
just like most previous works on feature combination [6,7]. In a
recent work [13], a linear, least square regression strategy is used
to learn the weights of different features. However, it seems the
performance is not very good for our salient region detection.
One possible reason is that different factors should not be simply
linearly combined. Thus, we here suggest a nonlinear learning
strategy to combine these three factors. In particular, we take a
neural network [16,17] to nonlinearly combine them, which is
our third contribution in this paper. In [18], Zhao et al. use the
nonlinear AdaBoost algorithm to combine different features. They
are required to iteratively put up some weak classifiers to
eventually get a strong classifier. Each weak classifier deals with
a single feature. The results rely on the choice of these weak classifiers.
In addition, the performance of AdaBoost may be defective when there
are only a small number of features. In contrast, the neural network as
a computational model just aiming to replicate the neural structure is
relatively more flexible and adaptive. Even if there are a small number
of features, a neural network can adjust with different stimuli and get
a good performance.

One typical result of our model is shown in Fig. 1(E). Clearly, the
salient object is more uniformly highlighted while the background
is largely suppressed. It is greatly consistent with the ground truth
(Fig. 1(F)). To further illustrate the effectiveness of our model, we
first conduct the experiments on a commonly tested database of
MSRA-1000 and compare it with 11 popular models. The results
show that our model can better detect the salient objects in
the image. We also conduct the eye fixation experiments on two
well-known databases. And the experimental comparison with

existing eight models shows that our model can well predict eye
fixations.

The rest of this paper is organized as follows: Our proposed
saliency region detection model is introduced in Section 2. Section 3
demonstrates that our model has a better performance to detect
salient objects than other representative models and also can well
predict eye fixations, and Section 4 concludes the paper.

2. Proposed salient region learning model

In the following, we introduce the Bayesian framework which
we use to detect visual saliency. Let x denote a point in the image,
which can be a pixel, a region or an object. The binary random
variable Sx indicates visual saliency of the point x at location lx with
features fx. Using Bayes' theorem, we can calculate the saliency value
of a point:

SVx ¼ pðSx ¼ 1jF ¼ f x; L¼ lxÞ ð1Þ

SVx ¼
pðF ¼ f x; L¼ lxjSx ¼ 1ÞpðSx ¼ 1Þ

pðF ¼ f x; L¼ lxÞ
ð2Þ

For simplicity, we assume the features and the location of a point
are independent and conditionally independent giving Sx¼1 [19].
So pðF ¼ f x; L¼ lxÞ ¼ pðF ¼ f xÞpðL¼ lxÞ and pðF ¼ f x; L¼ lxjSx ¼ 1Þ ¼
pðF ¼ f xjSx ¼ 1ÞpðL¼ lxjSx ¼ 1Þ. Then the formula (2) can be written as

SVx ¼
pðF ¼ f xjSx ¼ 1ÞpðL¼ lxjSx ¼ 1ÞpðSx ¼ 1Þ

pðF ¼ f xÞpðL¼ lxÞ
ð3Þ

SVx ¼ 1
pðSx ¼ 1Þ

pðF ¼ f xjSx ¼ 1ÞpðSx ¼ 1Þ
pðF ¼ f xÞ

pðL¼ lxjSx ¼ 1ÞpðSx ¼ 1Þ
pðL¼ lxÞ

ð4Þ

SVx ¼
1

pðSx ¼ 1ÞpðSx ¼ 1 F ¼ f xÞpðSx ¼ 1 L¼ lxÞ
���� ð5Þ

We assume that the prior probabilities of different points being
salient are equal without the location and features. So the saliency
value of a point is in direct proportion to the following formula:

SVxppðSx ¼ 1jF ¼ f xÞpðSx ¼ 1jL¼ lxÞ ð6Þ

The first term pðSx ¼ 1jF ¼ f xÞ detects saliency due to features
and the second term pðSx ¼ 1jL¼ lxÞ measures saliency based on
the spatial location of a point. In this paper, we use the global
rarity (marked as rarity) and local contrast (marked as distinctive-
ness) features of salient points to estimate pðSx ¼ 1jF ¼ f xÞ. And we
model the central bias for pðSx ¼ 1jL¼ lxÞ. In sum, three important
factors, i.e., the rarity, distinctiveness and central bias, are used
for our visual saliency detection. We call our model RDC in short.
In contrast to averaging different factors, we follow a learning
approach by training a neural network so that a more important
factor will have a higher power. The details of three factors and
the nonlinear combination method for salient region learning are
elaborated in the following.

Fig. 1. Different saliency detection results. (A) The original image. (B), (C) and (D) The saliency results only considering global rarity, local contrast and central bias proposed
by previous researchers respectively. (E) The result by combining our three new built factors. (F) The ground truth.
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2.1. Rarity

We compute the rarity factor based on the basic features:
CIELAB color. The color image is decomposed into three compo-
nents: L for lightness and a and b for the color-opponent dimen-
sions. These three components constitute three feature maps. The
feature maps generated from the feature component L can be seen
in Fig. 2(B). First, we compute the self-information for each pixel of
the feature map to get the self-information map (Fig. 2(C)). To get
rid of the false alarms in the background, we further de-noise the
self-information map based on regions to get the rarity map, i.e.,
the conspicuity map in the rarity factor.

2.1.1. Getting the self-information map
In each feature map, we calculate the self-information for each

pixel using the definition of self-information [12,20,21,4]. First, we
use a histogram of 100 bins to represent the distribution of feature
values in the feature map. Let N(i) denote the number of the pixels
in the i-th bin. Then we use the following formula to compute the
frequency for the feature value of each bin:

pðiÞ ¼ NðiÞþ1
∑100

i ¼ 1ðNðiÞþ1Þ ð7Þ

We add 1 to the number of the feature value of each bin to
avoid the multiplicative inverse of the frequency being infinite.
Then we compute the self-information for the feature value of
each bin:

HðiÞ ¼ log
1
pðiÞ ð8Þ

After that, we use the nearest neighbor interpolation method to
compute the self-information for the feature value of each pixel in
the feature map.

Different self-information maps got from corresponding feature
maps can be seen in Fig. 2(C). We observe that in the self-
information map the values of the object are generally larger than
those of the background. But there are also a lot of noise in
the background which should not be highlighted. To solve this
problem, we further de-noise the self-information map to get the
final rarity map.

2.1.2. De-noising the self-information map
We over-segment the image into a number of regions using the

mean-shift method [22] (see Fig. 2(A)) and de-noise the self-
information map based on the regions to get the rarity map.

To reduce the noise, we first smooth the self-information map
using Gaussian convolution. Because pixels in the same region
have the similar or even the same feature values, we think these
pixels are likely to have the same rarity value. So we compute the
average self-information of all pixels in one region as the rarity
value of this region. And the pixels in one region share the same
rarity value.

The rarity maps are shown in Fig. 2(D). Compared with the self-
information maps in Fig. 2(C), it can be seen that the object
becomes brighter and the background becomes darker, which
demonstrate that the de-noising operation is effective.

Note, to facilitate the visualization of different maps and the
weighting of different factors in the neural network, we normalize
the value of each point in different maps generated in our global

Fig. 2. Different maps generated in the rarity factor: (A) the over-segmented images, (B) the feature maps generated from the feature channel L, (C) the self-information
maps and (D) the rarity maps.
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rarity, local contrast and central bias factors to be in the range
[0, 1].

2.2. Distinctiveness

The methods in [9,7] also compute local contrast for saliency
detection. However, they only consider the local contrast factor
while our model integrates and benefits from global rarity, local
contrast and central bias factors. Secondly, the methods in [9,7]
only compute the regional contrast based on the feature dissim-
ilarity and distance coherence. The drawback of these methods is
that a part of the background may be wrongly highlighted, seen in
Fig. 4(D). So in our paper, to overcome this drawback, we propose
a refinement operation in the local contrast factor according to the
regional consistency that if the regions are more similar in feature
and closer in space, these regions will have the close saliency
values. The visual comparison in Fig. 4 and quantitative compar-
ison in Fig. 12 show that the refinement operation is useful.
Furthermore, unlike the work [9], the method to compute feature
dissimilarity in our paper is easy, efficient and has the good
extension ability. In the work [9], the authors first quantize colors
in the RGB color space and then measure color differences in the
Lab color space to compute feature dissimilarity, which is hard to
generalize to other feature spaces. While in our paper, we first
define the feature value of a region as the average feature value of
all pixels in this region and then simply define feature dissim-
ilarity of two regions as the difference between the feature values
of two regions. This method is easy to compute, highly improves
the computation efficiency and easily generalizes to other features.

The summary of our method to compute the distinctiveness
factor is as follows. Given a color image I, we first over-segment
the image into a number of regions using the mean-shift method
(see Fig. 4(A)). Let K denote the number of the regions. We use
three image components: L, a and b as feature maps. The feature
maps generated from the component L can be seen in Fig. 4(B). In
each feature map, we define the activation value of a region as the
sum of its contrasts to all the other regions. To avoid some part of
the background near the salient object being wrongly highlighted,
we further refine each activation map based on the similarity
and distance of regions to get the distinctiveness map, i.e., the
conspicuity map in the distinctiveness factor.

2.2.1. Activating the feature map
In this step, given a feature map F : mnn-R, our goal is to

compute an activation map A : mnn-R. The region which is

different from the surrounding regions will have high value in
the activation map A.

In each feature map, we compute the local contrast of regions
to get the activation map. The contrast of a region ri compared to
the region rj can be defined as follows:

Wðri’rjÞ ¼DF ðri; rjÞnDSðri; rjÞnf ðrjÞ ð9Þ

The first term DF ðri; rjÞ indicates the feature dissimilarity of two
regions. If region ri is different from other regions, it is more likely
to be distinct.

Because pixels of the same region have the similar or even
the same feature values in each feature map, we define the feature
value of a region as the average feature value of all pixels in this
region. The generated average maps can be seen in Fig. 4(C).

Then DF ðri; rjÞ is simply defined as the difference between the
feature values of two regions. This can highly improve the
computation efficiency and be easily generalized to other features:

DF ðri; rjÞ ¼ jFðriÞ�FðrjÞj ð10Þ

The second term DSðri; rjÞ indicates the spatial relationship of
two regions and has the following computational formula. This
term increases the effects of closer regions:

DSðri; rjÞ ¼ exp �
mðriÞ�mðrjÞ

M

� �2
þ nðriÞ�nðrjÞ

N

� �2
2s2

0
B@

1
CA ð11Þ

Among the formulas, ðmðriÞ;nðriÞÞ denotes the position of the
region ri and is defined as the centriod of the region. M and N
are respectively the number of rows and columns of the image
separately. And s is the scale parameter which controls the power
of spatial weighting. s with smaller values would weaken the
effect of spatial weighting so that far regions would make little
contribution to the saliency detection. But if s is too small, some part
of the salient object may be wrongly suppressed (see Fig. 3(B)). s with
larger values would strengthen the influence of spatial weighting. So
far regions would make a greater contribution. However, if s is too
large, some part of the background may be wrongly highlighted (see
Fig. 3(D)). The results are satisfactory when s is set from 0.15 to 0.25.
In our implementation, we use s¼ 0:2 for the salient object detection
and the eye fixation prediction.

The third term f ðrjÞ represents the relative size of the compared
region. The bigger regions have greater impact on the region ri. Let

Fig. 3. Distinctiveness maps of feature channel L using different s: (A) the original images, (B) the distinctiveness maps generated using s¼ 0:05, (C) using s¼ 0:2, (D) using
s¼ 0:5 and (E) the ground truths.
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Sð�Þ denote the size of a region. So the formula of f ðrjÞ is

f ðrjÞ ¼
SðrjÞ
SðIÞ ð12Þ

As is shown in the formula (9), the contrast of a region ri
compared to the region rj is in direct proportion to their dissim-
ilarity, their closeness and the relative size of the compared region.
That is, a nearby and dissimilar compared region of big size will
have a greater influence on the region ri than a far and similar
compared region of small size.

The activation value of a region is defined as the sum of the
contrasts compared to all the other regions:

AðriÞ ¼ ∑
K

j ¼ 1
Wðri’rjÞ ð13Þ

Then the region distinct from the surrounding regions will have
high value in the activation map (see Fig. 4(D)). Through the
observation, we find that some regions of the background near the
object may be wrongly highlighted. To solve this problem, we
refine the activation map according to the regional consistency
that nearby regions with similar features are more likely to have
the close saliency values to get a local contrast map.

2.2.2. Refining the activation map
First, we introduce the definition of similar regions. If the

feature dissimilarity of two regions is less than the average feature
dissimilarity of all the regions, we define these two regions as the
similar region (SR) of each other:

If DF ðri; rjÞoDave; then riASRj and rjASRi; where

Dave ¼
1

K2 ∑
K

i ¼ 1
∑
K

j ¼ 1
DF ðri; rjÞ ð14Þ

Then the distinctiveness value of a region ri is defined as the
weighted sum of activation values of its similar regions:

DðriÞ ¼
1

jSRij
∑

rs A SRi

Dave�DF ðri; rsÞ
Dave

nAðrsÞ ð15Þ

Because the feature dissimilarity between a region and itself is
zero, the weight ðDave�DF ðri; rsÞÞ=Dave equals 1 for the region ri
itself. The more dissimilar the feature value of a region rs and the

feature value of the region ri is, the smaller the weight is for the
region rs. When the feature dissimilarity between a region rs
and the region ri equals the average feature dissimilarity of all
the regions Dave, the weight for the region rs equals zero. jSRij
represents the number of similar regions of the region ri.

The drawback of the refinement operation in formula (15) is
the following: if the region ri in foreground and a distant region rs
in background have similar feature values, the weight for the
region rs is wrongly set to be large. We further incorporate spatial
information into the refinement operation so that the closer
regions have greater impact on the region ri than the farther
regions:

DðriÞ ¼
1

jSRij
∑

rs A SRi

DSðri; rjÞn
Dave�DF ðri; rsÞ

Dave
nAðrsÞ ð16Þ

The spatial information DSðri; rjÞ has been introduced in for-
mula (11). The weight in formula (16) indicates that close and
similar regions have close saliency values. The distinctiveness
maps can be seen in Fig. 4(E). Compared with the activation maps
in Fig. 4(D), we find that the regions near the object which are
wrongly highlighted in activation maps are blackened. Besides, the
object becomes brighter and the background becomes darker in
the distinctiveness maps, which show that the refinement opera-
tion is effective.

2.3. Central bias

Judd et al. [12] use the Euclidean distance between each pixel
and the center of the image to model the central bias factor. Zhao
et al. [13] use a 2D Gaussian distribution to model the time-
dependent and time-independent central biases. They all model
the central bias as a circle, which cannot provide any information
of salient objects and bring a lot of evident false alarms.

In this paper, we first use the Gaussian kernel function to
model offcenter map as an eclipse which is adjusted to the length–
width ratio of the image. To get rid of evident false alarms, we
further average the offcenter map based on regions to get the final
central bias map, i.e., the conspicuity map in the central bias factor.

Fig. 4. Different maps in the distinctiveness factor: (A) the over-segmented images, (B) the feature maps generated from the feature channel L, (C) the average maps, (D) the
activation maps and (E) the distinctiveness maps.
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2.3.1. Computing offcenter map
In this paper, we use the Gaussian kernel function to model the

offcenter map as an eclipse. Then the offcenter map is a real-
valued function whose value depends only on the distance
between a point and the center point. The central point has the
largest central bias value which is 1. And the farther the point is
away from the central point, the smaller the value is. Let M and N
denote respectively the number of rows and columns in the image
separately. (m,n) denotes the position of a random point and
ðmc;ncÞ denotes the position of the center point:

Oðm;nÞ ¼ exp �
m�mc

M

� �2þ n�nc
N

� �2
2s2

 !
ð17Þ

The resulting offcenter map is adjusted to the length–width
ratio of the image. We also compare the offcenter map modeled as
an eclipse with the offcenter map modeled as a circle, which is not
adjusted to the length–width ratio of the image:

Oðm;nÞ ¼ exp �
m�mc

1
2 ðMþNÞ

� �2

þ n�nc
1
2 ðMþNÞ

� �2

2s2

0
BBB@

1
CCCA ð18Þ

These two types of offcenter map model both the spatial
similarity between a point and the center point. s is the scale
parameter and controls the influence of central bias. Smaller
values of s would reduce the effect of central bias so that far
points would have a smaller central bias value. However, if s is too
small, salient objects would be wrongly suppressed (see Fig. 5B).
Larger values of s would strengthen the influence of central bias.
But if s is too large, background is tend to be highlighted (see
Fig. 5D). In our implementation, we use s¼ 0:25 for both types
of offcenter maps on the salient object detection database [23]
and the eye fixation prediction database [12,24]. By quantitatively
comparing these two types of offcenter maps, it indicates that
modeling the central bias as an ellipse is a little better than
modeling central bias as a circle, shown in Fig. 12. However, both
of these two offcenter maps only provide centrifugal distance, do
not include any information of salient objects and bring evident
false alarms. So we further average each offcenter map based on
regions to get the final central bias map.

2.3.2. Average offcenter map
We first over-segment the image into a number of regions

using the mean-shift method, as the segmentation operation in
the rarity and distinctiveness factors (see Fig. 6(A)). Then we
average the offcenter values of all pixels in one region as the

center bias value of this region. And the pixels in one region share
the same center bias value.

Compared with the offcenter maps (see Fig. 6(B)), it can be seen
that the center bias maps (see Fig. 6(C)) can give more information
of salient objects and avoid a lot of false alarms. The quantitative
comparison of the offcenter map and the final central bias map can
be seen in Fig. 12. From this figure, we can see that central bias
map is better than the offcenter map which shows the effective-
ness of the average operation.

2.4. Learning nonlinear combination

In this paper, we use a neural network of three layers: one
input layer, one hidden layer and one output layer. The illustration
of the nonlinear combination using the neural network is shown
in Fig. 7.

The number of the nodes in the input layer corresponds to
the number of features of the training sample. These features
ðx1;…; xa;…; xAÞ are the conspicuity values of the training samples
in different conspicuity maps got from three factors. In this paper,
we get three conspicuity maps in both the rarity and the distinc-
tiveness factors. Also, we get one conspicuity map in central bias
factor. So, A equals 7 in this paper.

Each node hb in the hidden layer is a combination of all nodes
in the input layer:

hb ¼ gðΘ0bþΘ1bx1þ⋯þΘabxaþ⋯þΘAbxAÞ ð19Þ

In this formula, Θab is the weight used to map from the input
layer to the hidden layer and the sigmoid function gðzÞ ¼
1=ð1þexpð� zÞÞ [16] is used as the mapping function.

The number of the nodes ðh1;…;hb;…;hBÞ in the hidden layer
indicates the complexity of the neural network. If the number of
the nodes in the hidden layer is small, the neural network has
fewer parameters and more prone to under-fitting. Meanwhile if
the number of the nodes in the hidden layer is large, the neural
network has more parameters and more prone to over-fitting. In
this paper, we set this number to 30. To avoid the possible problem
of over-fitting, we choose a large number of training samples.
Actually, the number of training samples can be very large because
in the database there are hundreds of images and each image
contains thousands of points.

The number of the nodes in the output layer is 1. This node
outputs a value between 0 and 1, indicating the saliency value
of a point. And this node is a combination of all nodes in
the hidden layer shown in the following formula. In this
formula, Θb is the weight used to map from the hidden layer to

Fig. 5. Offcenter maps of feature channel L using different s: (A) the original images, (B) the offcenter maps generated using s¼ 0:05, (C) using s¼ 0:25, (D) using s¼ 0:5
and (E) the ground truths.
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the output layer:

s¼ gðΘ0þΘ1h1þ⋯þΘbhbþ⋯þΘBhBÞ ð20Þ
Let fðxðjÞ; yðjÞÞg ðj¼ 1 : JÞ denote the training samples. xðjÞ records

the features of training samples. yðjÞ equals 1 for positive samples

and yðjÞ equals 0 for negative samples. And let sΘðxðjÞÞ denote
the output of saliency value giving the specific features xðjÞ and the
specific weights Θ. The algorithm details to learn the optimal
weights Θ¼ ½Θab;Θb� of the neural network which are given in
Algorithm 1.

Fig. 6. Different maps in the central bias factor: (A) the over-segmented images, (B) the offcenter maps and (C) the central bias maps.

Fig. 7. A neural network used to learning a nonlinear combination.
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Our model used for salient region learning is illustrated in
Fig. 8. The input image is analyzed in three parallel pathways
according to three factors: rarity, distinctiveness and central bias.
Finally, the conspicuity maps got in these factors are nonlinearly
combined into the saliency map using a neural network.

Algorithm 1. Learning a nonlinear combination using a neural
network.

Input:
Training images and corresponding ground truths. See Section

3 for the introduction of ground truths on different
databases.

A testing image It.
Output:
Saliency map of It.
Training stage:
1. From training images and corresponding ground truths, get

training samples fðxðjÞ; yðjÞÞg ðj¼ 1 : JÞ.
2. Initialize each weight in Θ¼ ½Θab; Θb� to a random small

value in ½�ϵ; ϵ�.
3. Use the backpropagation algorithm to learn the optimal

weights which minimizes the cost function
Θ¼ arg minΘ OðΘÞ, where

OðΘÞ ¼ �1
J ∑

J

j ¼ 1
½yðjÞlog ðsΘðxðjÞÞÞþð1�yðjÞÞlog ð1�ðsΘðxðjÞÞÞÞ�.

4. After getting the optimal weights, the final saliency value of a
point is computed using the formulas (19) and (20).

Testing stage (for a new image It):
For each point in It, compute the conspicuity values in different

modules, then apply the neural network to obtain the
saliency value of the point.

3. Experimental comparisons

We have evaluated our visual salient region learning model
in two practical applications, i.e., salient object detection and
eye fixation prediction. For salient object detection, we compare
different representative models about their performance on the
MSRA-1000 database provided by Achanta et al. [23]. Then we
compare different models about the performance of eye fixation
prediction on the MIT database provided by Judd et al. [12] and the
TORONTO database provided by Bruce et al. [24].

To evaluate our model, we use a 2-fold cross-validation
approach. The whole database is randomly divided into two parts.
We first use the first part as the training set and test on the second

part, followed by using the second part as the training set and
testing on the first part. Results are then averaged over these
two partitions. The advantage of 2-fold cross-validation approach
is that each image in the database is used for both training and
testing.

3.1. Salient object detection

The MSRA-1000 database contains 1000 images and includes
the accurate human-marked object-contour ground truths. To
train and test our model, the database is randomly divided into
two parts and each has 500 images. In the training stage, positive
samples and negative samples are respectively taken from the
object and the background.

We compare our model with 11 representative saliency detec-
tion models: AC [23], CA[25], FT [26], GB [7], HC [9], IT [6], LC [27],
MZ [8], RARE [15], RC [9] and SR [5].

The visual comparison of different models is shown in Fig. 9. It
can be seen that the salient points of the models AC, CA, FT, GB, IT,
LC, MZ, RARE and SR often locate near or on the edges of the
object, namely the salient object is not uniformly highlighted. The
saliency maps generated by HC and RC tend to highlight the whole
object, but the problem is that a portion of the background is
wrongly highlighted. Saliency maps generated by our RDC are
more consistent with the ground truths: they highlight the object,
commendably define the object borders and well suppress the
background.

We also quantitatively evaluate the detection performance of
different models. First we convert the type of saliency values into
uint8. So the saliency values will be in the range [0,255]. Then we
binarize the saliency map using the fixed threshold varying from
0 to 255 and compute the precision and recall at each threshold by
comparing the result with the ground truth. With the precision
and recall at each threshold, we can get a curve recording different
precisions and recalls at different thresholds for each model (see
Fig. 10). It provides quantitative comparison of different saliency
detection models and indicates how well they highlight salient
regions in an image. From the figure, it can be seen that our RDC
has outperformed all other models. When the fixed threshold is 0,
each model gets its own maximum recall. At that time, all points in
the image are labeled to be foreground and all models have equal
values for precision and recall. When the fixed threshold is 255,
only the points with a value of 255 are labeled to be foreground
and each model gets its own maximum precision. We can see that
the maximum precision value of RDC is the largest. And for each
value of recall, the precision of RDC is also higher than that of

Fig. 8. Process of our visual salient region learning model.
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other models which indicates that RDC highlights the salient
object more and well suppresses the background.

Because our RDC includes central bias factor, it is interesting to
see how our model works when the salient objects are not in the
center of the images. The related images and our detection results
are shown in Fig. 11. In row 1, we list the original images. It can be
seen that the salient object is on the left bottom in the first image
and salient objects are very close to the edges in other images. In
row 2 and row 3, we list the detection results of our RDC and the
ground truth respectively. We can see that our model can well
highlight the whole salient objects and suppress background. The

reason is that even if the salient object is not in the center of the
image, the global rarity and local contrast factors would make
contributions for the saliency detection. This, to a certain extent,
shows that our built factors complement each other nicely to help
our unified model to detect visual saliency.

To understand our model and the roles of three factors, rarity,
distinctiveness and central bias, we also quantitatively compare
the performance of different maps generated in these factors,
shown in Fig. 12. From this figure, it can be seen that the final
saliency map has the best performance. The maps generated in the
distinctiveness factor have better performance than those in rarity
and central bias factors. The rarity map and the central bias map
have similar performance. Moreover, we can see that the rarity
map is much better than the self-information map which shows
that the de-noising operation in the rarity factor is useful. The
distinctiveness map outperforms the activation map which indi-
cates that the refinement operation in the distinctiveness factor is
effective. Offcenter map modeled as an ellipse is a little better than
that modeled as a circle. And central bias map is much better than
both types of offcenter maps, which proves that average operation
in the central bias factor is beneficial.

To further understand our model, we also experiment and
compare saliency detection results using only one factor, two
factors and all three factors, shown in Fig. 13. For the sake of
simplicity, R denotes rarity factor, D denotes distinctiveness factor
and C denotes central bias factor. We can see that RDC has the best
performance compared with all others, which indicates that every
factor makes contribution in our model. More specifically, compar-
ing RDC with DC, we can see that the precision of RDC is higher
than DC when the recall is large. When comparing RDC with RD,
it can be seen that at each recall the precision of RDC is higher
than RD. Also when comparing RDC with RC, we can see that the
precision of RDC is higher than RC at each recall. So R, D and C all
help the model to highlight the salient object and suppress
background. The same conclusions can be found when comparing
two factors with one factor. In addition, if comparing between two

RDCImage Truth GBCAAC RCMZLCITHCFT SRRARE

Fig. 9. Visual comparison of different saliency detection models.
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Fig. 10. PR curves of different models on MSRA-1000 database.
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factors, we can see that DC has the best performance and RC has
the worst performance. If only considering one factor, it can be
seen that D factor outperforms R and C factors. R and C factors have
similar performances.

We also compare our neural network combination strategy with
other strategies: average strategy [6,7], least square regression
strategy [13] and AdaBoost strategy [18], shown in Fig. 14. Average
and least square regression are linear combination strategies.
AdaBoost and our neural network are nonlinear combination
strategies. To be fair, different strategies share the same features
which are rarity, distinctiveness and central bias. Average strategy
computes the final saliency result by assigning the same weight to
different features. Logistic regression strategy minimizes the squared
error function to get corresponding weight for each feature.
AdaBoost strategy learns a final strong classifier which is a weighted
combination of weak classifiers. Fig. 14 shows that our neural
network combination strategy outperforms other strategies. The
average strategy has the worst performance. The least square
regression and AdaBoost strategies have similar performances.

3.2. Eye fixation prediction

The MIT and TORONTO databases both include natural outdoor
and indoor images. And the ground truths are eye fixation maps
which record fixations from different observers who freely viewed
corresponding images. To train our model, positive samples are
taken from the top 5/100 salient pixels of the eye fixation map
and negative samples are taken from the bottom 80/100. The MIT
database has 1003 color images. For 2-fold cross-validation, the
database is randomly divided into two parts. One part has 501
images and another part has 502 images. The TORONTO database
has 120 color images. For 2-fold cross-validation, the database is
randomly divided into two parts and each has 60 images.

Image

RDC

Truth

Fig. 11. Our detection results when the salient objects are not in the center of the images.
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our model.
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Fig. 15 shows the examples of eye fixation maps. The red points in
the images record the eye fixations of humans. From the maps, it can
be seen that most of the eye fixations locate inside the object and do
not cover the whole object. So we use themost salient part of a map to
better predict the eye fixations. We first compute the new value of
each point in the rarity, distinctiveness and central bias maps as the
original value to the power of one point five. So the most salient
locations stand out and the sub-salient locations are suppressed. Then
we smooth these maps using Gaussian convolution to get the new
rarity, distinctiveness and central bias maps. Finally we nonlinearly
combine the new rarity, distinctiveness and central bias maps to get
the saliency map to predict the eye fixations. As a result, the final
saliency map highlights the most salient parts instead of highlighting
the whole object. Meanwhile, the final saliency map is in low-
resolution and the saliency values in the map change smoothly which
are more consistent with fixation density because the dense of the eye
fixations also changes smoothly.

Because the number of eye fixations is very small compared with
the total number of the pixels in the image, there exists the problem
of skewed class distribution. ROC curves are insensitive to class
skews [28], so we use ROC curves to quantitatively evaluate the
performance of different models to predict eye fixations. The process
to get the ROC curve of each model is as follows: we first convert the
type of the saliency values into uint8. Then we choose the fixed
threshold varying from 0 to 255 to binarize the saliency map and
compute the fp (false positive) rate and tp (true positive) rate at each
threshold by comparing the result with the eye fixation map. After
that, we get a curve recording different fp rates and tp rates at
different thresholds for each model. To compare the performance of

different ROC curves, a common method is to compute the area
under each ROC curve (AUC) [29,30]. In general, the higher the value
of AUC is, the better the corresponding ROC curve is.

We compare our model with eight other state-of-art models: BT
[19], FT [26], GB [7], IT [6], LG [31], RARE [15], SR [5] and SUN [32].

Fig. 16 shows ROC curves of different models and the respective
AUCs in MIT and TORONTO databases. From this figure, it can be
seen that our RDC outperforms most of the models which indicate
that RDC can well predict human fixations. When the fixed
threshold is 0, the tp rate and the fp rate of all models are 1.
When the fixed threshold is 255, the tp rate and the fp rate of all
models are around 0. And for each value of fp rate, the tp rate
of RDC is higher than most models. According to the AUC, the
performance of RDC is better than most of the models except BT in
both MIT and TORONTO databases. The reason why BT has the best
performance is that it includes high-level features, e.g. face, person
and car, besides low-level features while other models only
compute low-level features. In this paper, we only consider the
global rarity and local contrast features for the feature term of
formula (6) in the Bayesian framework introduced in Section 2.
However, more useful features including high-level features can be
included into this framework, which we are planning to work on.

4. Conclusion

We have proposed a salient region learning model in this paper.
The model includes three important factors for visual saliency
detection: global rarity, local contrast and central bias. To improve

Fig. 15. The examples of eye fixation maps. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the performance, we propose new methods to compute these
factors. Finally we learn a neural network to nonlinearly combine
different factors to get the saliency map. The experimental
comparisons demonstrate that our model outperforms other
representative models to detect salient objects and also well
predicts eye fixations. In the future, we plan to do research on
effective models which incorporate high-level concepts and con-
textual features for visual saliency in target searching situation.
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